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Abstract
Recent state-of-the-art neural text-to-speech (TTS) synthesis
models have dramatically improved intelligibility and natural-
ness of generated speech from text. However, building a good
bilingual or code-switched TTS for a particular voice is still a
challenge. The main reason is that it is not easy to obtain a
bilingual corpus from a speaker who achieves native-level flu-
ency in both languages. In this paper, we explore the use of
Mandarin speech recordings from a Mandarin speaker, and En-
glish speech recordings from another English speaker to build
high-quality bilingual and code-switched TTS for both speak-
ers. A Tacotron2-based cross-lingual voice conversion system
is employed to generate the Mandarin speaker’s English speech
and the English speaker’s Mandarin speech, which show good
naturalness and speaker similarity. The obtained bilingual data
are then augmented with code-switched utterances synthesized
using a Transformer model. With these data, three neural TTS
models – Tacotron2, Transformer and FastSpeech are applied
for building bilingual and code-switched TTS. Subjective eval-
uation results show that all the three systems can produce (near-
)native-level speech in both languages for each of the speaker.
Index Terms: cross-lingual voice conversion, Phonetic Posteri-
orGrams (PPGs), Tacotron2, Transformer, FastSpeech, text-to-
speech, bilingual, code-switching

1. Introduction
State-of-the-art end-to-end neural TTS models [1, 2, 3] have
been developed to produce high intelligible and natural mono-
lingual speech in a single speaker’s voice. However, it is still a
major challenge to extend such models to support bilingual and
code-switched TTS, which is observed as growing demands in
various scenarios. The difficulty in obtaining a bilingual cor-
pus produced by a speaker who is highly proficient in both lan-
guages makes the task not straightforward. Therefore, quite
a few efforts attempt to leverage on speech corpora from two
monolingual speakers in different languages for building bilin-
gual or code-switched TTS systems.

Early studies on TTS supporting more than one language
with a monolingual speaker’s voice are mostly HMM-based
methods. [4] proposes a Polyglot synthesis method that adapts
the shared HMM states trained on a mixture of monolingual
corpora to the target speaker. [5] proposes an HMM-based
parametric TTS system based on a speaker and language fac-
torization. [6] uses a trajectory tiling approach to render the tar-
get monolingual speaker’s speech waveforms in a second lan-
guage. A HMM-based TTS is then built with the rendered
speech and the target speaker’s original recordings in the other
language. [7] proposes using a GMM-based cross-lingual voice
conversion (VC) to generate a monolingual speaker’s speech in
other languages. Eventually, this speaker’s multilingual data
is created, and then used for building an HMM-based poly-

glot speech synthesizer. [8] presents an HMM-based paramet-
ric code-switched TTS system based on monolingual datasets.
A combined phonetic space in both languages is explored, and
the pronunciations are mapped across languages. [9] uses a
speaker-independent DNN ASR output to map the senones be-
tween two monolingual corpora in two languages for building
an HMM-based TTS system.

Recently, neural network based TTS models are also ex-
plored for cross-lingual TTS. [10] presents a multi-lingual and
multi-speaker neural TTS model based on the VoiceLoop archi-
tecture [11] with speaker and language embedding networks.
[12] proposes code-switched TTS using Tacotron-based end-to-
end systems [13]. It uses a Mandarin and an English monolin-
gual speech corpora uttered by two female speakers. Two mech-
anisms are implemented: (1) a shared encoder with language
embedding, and (2) two separate language-dependent encoders.
Experiments show that their systems work well when synthesiz-
ing an American speaker’s Mandarin speech, while the perfor-
mance is not too good when synthesizing a Mandarin speaker’s
English speech. [14] explores a Mandarin/English code-
switched TTS model based on the Tacotron2 model [1]. The
authors investigate speaker embedding and phoneme-informed
attention. They build a base model on multi-speaker monolin-
gual data, and then adapt it to a target Mandarin speaker’s voice.
Their model is able to produce code-switched speech, but unnat-
ural prosody and inaccurate tones can be observed for Mandarin
words next to English words. Most recently, [15] presents a
multi-lingual TTS model that is able to preserve a monolingual
target speaker’s voice characteristics across three different lan-
guages based on Tacotron2 [1]. The model is trained on mono-
lingual recordings from a large number of speakers. It uses a
unified phoneme input representations, and also incorporates an
adversarial loss to decouple speaker identities from speech con-
tent. However, their model relies on data from a large number
of speakers per language to achieve good performance in cross-
lingual voice cloning; and it only provides rudimentary support
for code-switching.

In this work, we present a method to build bilingual and
code-switched TTS models using monolingual corpora from a
female British English speaker and a female Mandarin speaker.
We obtain the Mandarin speaker’s English speech and the En-
glish speaker’s Mandarin speech by a Tacotron2-based cross-
lingual voice conversion method. Although the idea of using
cross-lingual VC for mixed-lingual TTS has been presented in
[7], our cross-lingual VC method achieves good naturalness and
speaker similarity. Using each speaker’s original corpus and the
converted speech in the other language, we explore different
neural TTS model architectures – Tacotron2 [1], Transformer
[2] and FastSpeech [3] for bilingual and code-switched speech
synthesis. By using Transformer TTS models trained on the
obtained bilingual corpora to generate code-switched speech to
further augment the training data, our experiments and evalua-
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Figure 1: Our neural framework for cross-lingual voice conver-
sion of source speech to target speech.

tion results show that all the three systems can produce (near-
)native-level speech in both languages and on code-switched
content as well. Our contributions include: (1) to the best of our
knowledge, this is the first work that adapts neural TTS model
architectures to cross-lingual VC in building bilingual and code-
switching TTS, where high speech quality and speaker similar-
ity are achieved; (2) we explore and implement three different
models for bilingual and code-switched TTS.

2. Building Bilingual and Code-Switched
TTS

This work uses monolingual corpora from an English speaker
and a Mandarin speaker. The objective is to build high-quality
English-Mandarin bilingual and code-switched TTS for each of
the speaker’s voice. One of the keys to building such a TTS
with monolingual data is to solve bilingual phonetic coverage
[14]. We realize a full bilingual phonetic coverage by cross-
lingual VC for both speakers, that is, generating the Mandarin
speaker’s English speech and the English speaker’s Mandarin
speech. Thus, each of the original monolingual corpora is ex-
panded to be bilingual. Based on these data, we then explore
three architectures – Tacotron2 [1], Transformer [2] and Fast-
Speech [3] for bilingual and code-switched TTS.

2.1. Building bilingual corpora with Tacotron2-VC

The speech data that we have are two monolingual corpora
from a Mandarin speaker and an English speaker. Cross-lingual
voice conversion is employed to transform the voice of the orig-
inal Mandarin corpus to the English speaker’s voice and trans-
form the voice of the original English corpus to the Mandarin
speaker’s voice. Thus both speakers’ bilingual speech data
are obtained. Different from other cross-lingual VC methods
[16, 17, 18, 19, 20, 21, 22], we adapt state-of-the-art TTS model
– Tacotron2 [1] to this cross-lingual VC task. Together with
LPCNet neural vocoder, this Tacotron2-VC framework is able
to generate a target monolingual speaker’s high-quality speech
in another language. The whole framework is illustrated in Fig.
1. First, we use a Phonetic PosteriorGram (PPG) extractor to
extract PPGs from a source speaker’s utterances. We then gen-
erate the LPCNet features by feeding the PPGs to a Tacotron2-
based synthesizer network that is well trained for mapping from
PPGs to LPCNet features in a target speaker’s voice. In this
synthesizer network for VC, normalized log-F0 features from
the source utterances are concatenated with the encoder output,
for preserving the shape of F0 contours during the conversion.
The detailed structure of Tacotron2-based synthesizer network
for VC is shown in Fig. 2. Finally, a LPCNet vocoder that is
trained on the target speaker’s data convert the Tacotron2-VC-
generated LPCNet features to waveforms. The components of

Figure 2: The architecture of the synthesizer network in
Tacotron2-VC.

Tacotron2-VC are elaborated in the following subsections.

2.1.1. The PPG extractor

A PPG represents posterior probabilities of phonetic classes
(phonemes or triphones/senones) for every frame of an utter-
ance [23, 24]. It can be considered as a speaker- and language-
independent representation of acoustic information, and is first
used for cross-lingual VC in [20] and followed by [21]. Lim-
ited by the converter models and vocoders used in their efforts,
the quality of the generated speech is far lower than profes-
sional speech recordings. In Tacotron2-VC, we also use PPGs
to bridge across the speaker and language differences. They are
extracted by a PPG extractor. It works similarly as a speaker-
independent acoustic model of an ASR system. The PPG ex-
tractor is trained to classify frame-based MFCCs to the corre-
sponding senones by minimizing the cross-entropy loss. This
PPG extractor is implemented based on the open-source pack-
age, Pytorch-Kaldi [25]. We train a network that contains 5
bidirectional GRU layers with 550 hidden units on each layer.
The senone labels are obtained from force-alignments of a well-
trained GMM-HMM system. In our experiments, we use 488-
dim PPGs.

2.1.2. The Tacotron2-based synthesizer network for VC

As shown in Fig. 2, the synthesizer network in Tacotron2-VC
is used for a sequence to sequence prediction from PPGs to
LPCNet features. The architecture of the synthesizer network is
composed of an encoder and a decoder with an attention mech-
anism. An input PPG is first processed by a fully connected
feed-forward (FF) linear layer (PPG Linear). The PPG Linear
has 512 output units, followed by the layer normalization and
ReLU activation. Thus the PPG input is transformed to 512-dim
embeddings. The output of the PPG linear is then converted into
a hidden feature by the encoder, which is composed of a 3-layer
1D CNN (512 filters with shape 5×1) and 1-layer bidirectional
LSTM (256 units in each direction). The hidden feature rep-
resentation is concatenated with a 1-dim Log-F0 sequence and
then passed to the decoder to predict 20-dim LPCNet features
and 1-dim stop token. The decoder is composed of a Pre-Net
(2 FF layers of 256 hidden ReLU units), a 2-layer LSTM of
1024 units, 2 separate linear layers, and a 5-layer CNN (512 fil-
ters with shape 5 × 1) with a residual connection. We perform



downsampling for the input PPG to reduce its length. We also
replace the location-sensitive attention by the GMM attention
[27] to improve the alignment performance. Our Tacotron2-VC
is implemented based on the open-source repository1.

2.1.3. The LPCNet vocoder

A sequence of LPCNet feature vectors generated by the syn-
thesizer network is reconstructed to a waveform by a LPCNet
vocoder [28]. Each LPCNet feature vector consists of 18 Bark-
scale cepstral coefficients and 2 pitch parameters (period, cor-
relation). We use the open-source code published by Mozilla
team on Github 2 for the LPCNet vocoder.

2.1.4. Training and conversion

Our Tacotron2-VC consists of a training stage and an inference
stage. In the training stage, all the above three components are
trained separately. The PPG extractor is speaker-independent
and is used for PPG extraction on both the English and the
Mandarin corpora. It is trained using AISHELL corpus [26].
The synthesizer network for VC and the LPCNet vocoder are
speaker dependent and trained on each speaker’s original cor-
pus. For each speaker’s corpus, we extract the utterance-based
PPGs, Log-F0s, and LPCNet features. The Log-F0s are nor-
malized per speaker with zero mean and unit variance. The
PPGs, normalized Log-F0s, and LPCNet features are used to
train a synthesizer network for each speaker. The LPCNet fea-
tures and the waveforms of the original speech recordings are
used to train speaker-dependent LPCNet vocoders. When all
the three components are well trained, we use the system to
perform voice conversion on each corpus. For obtaining the
Mandarin speech in the English speaker’s voice, the Mandarin
recordings are first processed to obtain MFCCs and Log-F0s,
the MFCCs are sent to the PPG extractor to obtain PPGs. Both
PPGs and normalized Log-F0s are fed into the converter trained
on English recordings, to generate LPCNet features. Finally,
these LPCNet features are passed to the LPCNet vocoder of
the English speaker to generate Mandarin speech in the English
speaker’s voice. The same procedure applies for obtaining the
English speech in the Mandarin speaker’s voice.

2.2. Bilingual and code-switched TTS models

Next step is to build bilingual and code-switched TTS using
the bilingual corpora obtained from the above conversion step.
For each speaker, we apply three different model architectures
including Tacotron2, Transformer and FastSpeech. Note that
there is no code-switched utterances in the obtained bilingual
corpora. The TTS models still need to learn the code-switching
from monolingual English and Mandarin utterances. We de-
scribe our training procedure as follows.

2.2.1. Input representation

The typical input representations for end-to-end TTS models
are character, phoneme, or UTF-8 byte encoding. In this work,
we use phoneme representation as the work [15] suggests that
the phoneme-based TTS model performs significantly better
than char- or byte-based variants due to rare or OOV words.
Instead of using a unified phone set across languages, we com-
bine English and Mandarin phone sets together as a whole. For
English utterances, we use 44 British English phoneme symbols

1https://github.com/keithito/tacotron
2https://github.com/mozilla/LPCNet

plus 3 possible stress symbols. For Mandarin utterances, we use
62 Pinyin initials and finals plus 5 possible tones. The tone or
stress symbols are attached to the corresponding phoneme sym-
bols. We also use symbols to indicate in-utterance pauses and
utterance ends.

2.2.2. Training TTS models

We use a Tacotron2 architecture based on the description in [1].
But we replace the character input sequence by the phoneme
input sequence. The original model predicts 80-dim mel-scale
spectrograms and uses a WaveNet vocoder to synthesize time-
domain waveforms from those spectrograms. We modify the
model to predict 20-dim LPCNet features and use a LPCNet
vocoder for waveform generation. Our implementation is based
on the open-source code3. For the Transformer TTS model, we
use the architecture described in [2]. The original model also
predicts mel-scale spectrograms for a WaveNet vocoder. Again,
we modify the model to predict LPCNet features for a LPCNet
vocoder. We also follow [3] for the FastSpeech TTS model ar-
chitecture. Similarly, we modify the model to generate LPC-
Net features. We use the open source code ESPnet4 to train the
Transformer and FastSpeech models. As the FastSpeech model
needs the phone duration as a target to train the duration predic-
tor, we first train a Transformer TTS model to obtain encoder-
decoder attention alignments on the training data sets. The ob-
tained alignments are then used to train the duration predictor of
the FastSpeech TTS model. In our experiments, we observe that
the Tacotron2 TTS model trained only on the bilingual corpus
produces more prosodic errors for code-switched text than the
Transformer and the FastSpeech TTS models. We therefore use
the Transformer TTS model to create a set of code-switched
speech data for each of the two speakers. We then add these
code-switched utterances into the bilingual training sets to re-
fine the Tacotron2 TTS model. We find that such data augmen-
tation process can also benefit the Transformer and FastSpeech
TTS models.

3. Experiments
3.1. Experimental setup

Both the English and the Mandarin corpora in our experiments
are professional speech recordings for TTS. The English cor-
pus is produced by a female native British English speaker. It
has 27,000 utterances and the total length is about 41 hours.
The Mandarin corpus is produced by a female native Mandarin
speaker. It has 32,000 utterances and the total length is about
30 hours. We select 250 utterances for validation and 250 utter-
ances for testing. All speech data are sampled at 16 kHz with
16-bit resolution. We also create a code-switched text corpus
of 17,000 sentences by replacing the selected English or Chi-
nese words in monolingual sentences by their translated coun-
terparts. We then use our well-trained Transformer TTS model
to generate speech from these code-switched texts. The total
length of obtained code-switched speech data set is about 16
hours. These generated code-switched utterances are used to
refine the Tacotron2 TTS model.

3.2. Subjective tests

We conduct MOS evaluations for both VC and TTS results.
The VC results are evaluated on speech naturalness and speaker

3https://github.com/keithito/tacotron
4https://github.com/espnet/espnet



Table 1: The cross-lingual VC naturalness and similarity MOS
with 95% confidence intervals for both English and Mandarin
speakers using Tacotron2-VC (GT: Ground Truth).

Target
Speaker

MOS Scores

Naturalness (GT) Similarity (GT)
Mandarin 3.99±0.07 (4.45±0.15) 3.79±0.11 (4.38±0.09)
English 4.11±0.10 (4.22±0.13) 3.71±0.09 (4.25±0.09)

Table 2: The MOS with 95% confidence intervals on the Man-
darin speaker’s bilingual and code-switching neural TTS mod-
els.

Model Language
Chinese English Code-Switch

GroundTruth 4.16±0.10 4.20±0.15 -
Tacotron2 4.12±0.06 3.95±0.11 3.96±0.08
Transformer 4.03±0.06 3.87±0.09 3.97±0.08
FastSpeech 4.10±0.06 3.91±0.08 3.94±0.08

similarity separately, while the TTS results are evaluated on
overall speech quality. Ratings follow the Absolute Category
Rating scale, with scores from 1 (bad) to 5 (excellent) in 0.5
point increments. For speech naturalness tests, all raters are
native speakers in the language of the evaluating utterances.
For speaker similarity tests, most of the raters are Mandarin-
English bilingual speakers. Rating on speaker similarity across
languages is rather challenging. The raters are advised to ignore
the speech content but focus only on the speaker identity. The
ground truth are self similarity scores on the original speech
recordings.

3.2.1. VC results

Two Tacotron2-VC system are trained separately for the two
speakers. We convert the Mandarin recordings to the English
speaker’s voice and the English recordings to the Mandarin
speaker’s voice. Table 1 gives the naturalness and similar-
ity MOS results for the converted speech in the two speakers
voices. Each MOS score is averaged over 20 randomly picked
utterances where each utterance is rated by 10 raters. The MOS
scores in Table 1 indicate that the converted speech achieves
reasonably good naturalness and similarity compared to the
ground-truth MOS scores. Our following evaluation results on
TTS also confirm the effectiveness of using the speech data
converted from Tacotron2-VC for bilingual and code-switched
speech synthesis.

3.2.2. TTS results

Table 2 and 3 show the MOS results on speech quality of the
synthesized utterances from the Tacotron2, Transformer, and
FastSpeech TTS models. For monolingual English and Chi-
nese utterances, raters are advised to focus on speech intelli-
gibility and naturalness. For code-switched utterances, raters
are advised to also focus on speaker consistency. From the re-
sults, we observe the synthesized monolingual Mandarin and
code-switched speech in the English speaker’s voice has com-
parable performance to that in the Mandarin speaker’s voices.
The MOS scores of the synthesized English speech in the En-
glish speaker voice are slightly higher than those on the syn-
thesized English speech in the Mandarin speaker’s voice. For

Table 3: The MOS with 95% confidence intervals on the En-
glish target speaker’s bilingual and code-switching neural TTS
models.

Model Language
Chinese English Code-Switch

GroundTruth 4.15±0.11 4.34±0.13 -
Tacotron2 4.07±0.06 4.09±0.09 3.99±0.08
Transformer 4.12±0.07 4.02±0.09 3.98±0.07
FastSpeech 4.08±0.07 4.16±0.10 3.90±0.08

the Mandarin speaker, the MOS scores of the synthesized Man-
darin speech are slightly higher than those of the synthesized
English and the code-switched speech. For the English speaker,
the MOS scores of the synthesized English speech are similar as
those of the synthesized Mandarin speech, and slightly higher
than those of the synthesized code-switched speech. For both
speakers, all the TTS MOS scores are close to the ground-truth
MOS scores. The results indicate that the TTS models achieve
good performance in synthesizing bilingual and code-switched
speech. The readers are recommended to listen to our audio
samples from the demo page5.

4. Conclusions
In this paper, we present an approach to natural bilingual and
code-switched TTS. This work relies only on two monolingual
corpora. A Tacotron2-based cross-lingual VC is used to gen-
erate high-quality speech in the other language, thus expanding
the two monolingual corpora to be bilingual ones. We show that
the Transformer and FastSpeech TTS models that are trained
on the generated bilingual corpora can synthesize natural bilin-
gual and code-switching speech, of which the overall quality is
close to the professional speech recordings. The bilingual cor-
pora can be further augmented with the code-switched speech
synthesized using Transformer model; then, these augmented
corpora can be used to refine the Tacotron2 TTS model for
achieving a comparable performance to the Transformer and
FastSpeech models. The proposed framework of bilingual and
code-switched TTS should be applicable to other speaker and
language pairs.
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